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Roll No.                         Total No. of Pages : 02 

Total No. of Questions : 07  

M.Sc. Mathematics   (Sem.-2) 
ALGEBRA-II 

Subject Code : MSM-201-18 

M.Code : 75962 

Date of Examination : 12-12-22 

Time : 3 Hrs.                                                                      Max. Marks : 70 

INSTRUCTIONS TO CANDIDATES : 

 1. SECTION-A is COMPULSORY consisting of FIVE questions carrying TWO marks 
each. 

 2. SECTION - B & C have THREE questions each. 

 3. Attempt any FOUR questions from SECTION - B & C carrying FIFTEEN marks 
each. 

 4. Select atleast TWO questions from SECTION - B & C each. 
  

SECTION-A 

 1. Attempt the following : 

  a) Let R and S be two isomorphic rings. Show that R[x] and S[x] are also isomorphic. 

  b) Show that 2x + 1 is a unit in 4 [x]. 

  c) Prove that the polynomial f (x) = x2 – 2x – 15 is reducible over . 

  d) Show that every field extension of prime degree is simple. 

  e) If a field F has q elements, then F is a splitting field of x
q
 – x over its prime subfield. 

 

SECTION-B 

 2. a) An integral domain R with unity is a UFD if and only if every non-zero, non-unit 
element is finite product of primes. (7) 

  b) Show that every ideal in F[x], where F is a field, is a principal ideal. (without using 
the fact that F[x] being a Euclidean domain is a PID.) (8) 
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 3. a) Show that x4 + 1 is not irreducible over p for any prime p. (7) 

  b) Let F be a field and p (x), f (x), g (x)   F (x), where p (x) is irreducible over F. Show 
that if p (x) | f (x) g (x), then either p (x) | f (x) or p (x) | g (x). (8) 

 4. a) If L is an algebraic extension of K and K is an algebraic extention of F, then L is an 
algebraic extension of F. (7) 

  b) Prove that the ring  of integers is a principal ideal domain. (8) 

 

SECTION-C 

 5. a) Find the splitting field of x5 – 3x3 + x2 – 3 over . Also find the degree and the basis 

of it over . (7) 

  b) Prove that every algebraic extension of a finite field is a separable extension. (8) 

 6. a) Find the Galois field of 9 elements. (7) 

  b) If F is a finite field and m  , then there exist a field extension K of F such that  

[K : F] = m. (8) 

 7. a) Find the fixed field under A ut (K), where K = 2. (7) 

  b) Prove that any field extension K of F of degree two is a normal extension of F. (8) 

 

 

 

 

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any 
page of Answer Sheet will lead to UMC against the Student. 
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