Total No. of Questions: 07
M.Sc. Mathematics (Sem.-2)

ALGEBRA-II
Subject Code: MSM-201-18
M.Code : 75962

Date of Examination : 12-12-22
Time : 3 Hrs.
Max. Marks: 70

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of FIVE questions carrying TWO marks each.
2. SECTION - B \& C have THREE questions each.
3. Attempt any FOUR questions from SECTION - B \& C carrying FIFTEEN marks each.
4. Select atleast TWO questions from SECTION - B \& C each.

SECTION-A

1. Attempt the following :
a) Let R and S be two isomorphic rings. Show that $R[x]$ and $S[x]$ are also isomorphic.
b) Show that $2 x+1$ is aunit in $\mathbb{Z}_{4}[x]$.
c) Prove that the polynomial $f(x)=x^{2}-2 x-15$ is reducible over \mathbb{Z}.
d) Show that every field extension of prime degree is simple.
e) If a field F has q elements, then F is a splitting field of $x^{q}-x$ over its prime subfield.

SECTION-B

2. a) An integral domain R with unity is a $U F D$ if and only if every non-zero, non-unit element is finite product of primes.
b) Show that every ideal in $F[x]$, where F is a field, is a principal ideal. (without using the fact that $F[x]$ being a Euclidean domain is a PID.)
3. a) Show that $x^{4}+1$ is not irreducible over \mathbb{Z}_{p} for any prime p.
b) Let F be a field and $p(x), f(x), g(x) \in F(x)$, where $p(x)$ is irreducible over F . Show that if $p(x) \mid f(x) g(x)$, then either $p(x) \mid f(x)$ or $p(x) \mid g(x)$.
4. a) If L is an algebraic extension of K and K is an algebraic extention of F, then L is an algebraic extension of F.
b) Prove that the ring \mathbb{Z} of integers is a principal ideal domain.

SECTION-C

5. a) Find the splitting field of $x^{5}-3 x^{3}+x^{2}-3$ over \mathbb{Q}. Also find the degree and the basis of it over \mathbb{Q}.
b) Prove that every algebraic extension of a finite field is a separable extension.
6. a) Find the Galois field of 9 elements.
b) If F is a finite field and $R \in \mathbb{N}$, then there exist a field extension K of F such that $[K: F]=m$.
7. a) Find the fixed fighe under A ut (K), where $K=\mathbb{Z}_{2}$.
b) Prove that h y field extension K of F of degree two is a normal extension of F.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

